Algorithm Refinement for Stochastic Partial Differential Equations
نویسندگان
چکیده
We construct a hybrid particle/continuum algorithm for linear diffusion in the fluctuating hydrodynamic limit. The particles act as independent random walkers and the fluctuating diffusion equation is solved by a finite difference scheme. At the interface between the particle and continuum computations the coupling is by flux matching, and yields exact mass conservation. This approach is an extension of Adaptive Mesh and Algorithm Refinement [J. Comp. Phys. 154 134 (1999)] to stochastic partial differential equations. We present results from a variety of numerical tests, and in all cases the mean and variance of density are obtained correctly by the stochastic hybrid algorithm. A non-stochastic hybrid (i.e., using only deterministic continuum fluxes) results in the correct mean density, but the variance is diminished except in particle regions away from the interface. Extensions of the approach to other applications are discussed.
منابع مشابه
APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملAn Adaptive Algorithm for Ordinary, Stochastic and Partial Differential Equations
The theory of a posteriori error estimates suitable for adaptive refinement is well established. This work focuses on the fundamental, but less studied, issue of convergence rates of adaptive algorithms. In particular, this work describes a simple and general adaptive algorithm applied to ordinary, stochastic and partial differential equations with proven convergence rates. The presentation has...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملPartial Differential Equations applied to Medical Image Segmentation
This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002